Jet Physics in ALICE

Joern Putschke for the ALICE Collaboration (Wayne State University)

ALICE pp jet x-section measurements and pQCD calculation

"Inclusive jet spectrum for small-radius jets", arXiv:1602.01110

Figure 15. Comparison between a range of theoretical predictions for the inclusive jet cross-section ratio and data from ALICE at $\sqrt{s} = 2.76 \,\text{TeV}$ [13]. The left-hand column shows NLO-based comparisons, while the right-hand one shows NNLO_R-based comparisons. Rectangular boxes indicate the size of systematic uncertainties on the data points, while the errors bars correspond to the statistical uncertainties.

ALICE pp jet x-section measurements, in particular at lower jet energies, can be used to constraint (N)NLO corrections

(Charged) Jet (Q)R_{pPb} vs Centrality

arXiv:1603.03402 (submitted to EPJC); Detailed discussion of centrality biases in Phys. Rev. C 91, 064905 (2015)

QpPb ~ 1 for all centralities and independent on jet p_T

(Charged) Jet (Q)R_{pPb} vs Centrality

arXiv:1603.03402 (submitted to EPJC); Detailed discussion of centrality biases in Phys. Rev. C 91, 064905 (2015)

Jet Structure Ratio in pPb collisions vs Centrality

Jet Structure (Ratio: R=0.2/R=0.4) consistent with pp expectations

Di-Jet k_{Ty} in pPb collisions

Di-Jet k_{Ty} consistent with Pythia predictions \rightarrow for large Q² mainly sensitive to the increased available phase-space for QCD radiation processes

Di-Jet k_{Ty} in pPb collisions

Di-Jet k_{Ty} consistent with Pythia predictions \rightarrow for large Q² mainly sensitive to the increased available phase-space for QCD radiation processes

No centrality dependence observed in pPb collisions

(Light flavor) PID in Jets in pPb

Lambda to K ratio in jets significantly lower than inclusive; consistent with Pythia expectations (and PbPb results)

Summary of pPb: Emphasis on Jets

PLB 719 (2013), pp. 29-41

Interesting, collective(?) behavior at low p_T seen even in the "small" pPb system!

In contrast: Jets as measured in the available kinematics in ALICE (η , p_T) suggest no strong CNM effects!

Jet Quenching in the QGP

perturbative QCD (pQCD, weak coupling)

(Qualitative) Consistent pQCD-type radiative jet energy loss picture at RHIC and the LHC

Jet Quenching in the QGP

perturbative QCD (pQCD, weak coupling)

(Qualitative) Consistent pQCD-type radiative jet energy loss picture at RHIC and the LHC

Jet Quenching in the QGP - ALICE Measurements

(Light flavor) PID in Jets in PbPb

Unique capabilities in ALICE at the LHC! Important measurement in pp in itself!

Lambda to K ratio in jets significantly lower than inclusive; consistent with pp/Pythia expectations

Jet Shapes

$$g = \sum_{i \in \text{jet}} \frac{p_T^i}{p_T^{jet}} |r_i|$$

 r_i is distance beween Consituent i and jet axis

Radial moment (g) is a p_T weighted width of the jet: collimated jets have lower g

 $p_{T}D$ measures the dispersion of the constituents in the jet: jets with fewer constituents give higher $p_{T}D$

Jet Shapes in pp

Validated PYTHIA reference with data from 7 TeV pp collisions Important QCD measurement in pp collisions in itself!

Jet Shapes in PbPb

p_TD shifted to higher values in PbPb wrt to Pythia

→ Indication of fewer jet constituents and larger p_T dispersion in PbPb!

Jet Shapes in PbPb

p_TD shifted to higher values in PbPb wrt to Pythia

- → Indication of fewer jet constituents and larger p_T dispersion in PbPb!
- g shifted to smaller values in PbPb wrt to Pythia
- → Indication of more collimated jet cores (R=0.2) in PbPb!

Jet Shapes in PbPb: Model Comparison

Qualitative agreement with JEWEL Simulations; Jet core more collimated - soft particles emitted at "large" angles

Jet Shapes, Virtuality and (Jet) Fragmentation Functions (FF) ...

FF ratio @ high z → 1

Jet Shapes indicate collimation

→ Consistent with radiative energy loss picture?

Jet Shapes, Virtuality and (Jet) Fragmentation Functions (FF) ...

FF ratio @ high z → 1

Jet Shapes indicate collimation

→ Consistent with radiative energy loss picture?

Initial parton energy $> E_{Jet}(AA)$

In FF measurements:

 $E_{Jet}(pp) = E_{Jet}(AA)$ (only small enhancement of

(only small enhancement of jet energy at low-z, few %)

But what about the virtuality of the (leading) parton after energy loss in the medium?

Importance of Virtuality/Jet Mass

Comparing jets in AA with pp with the same (reconstructed) energy might not be sufficient: <u>not comparing apples-with-apples</u>

Leading parton after escaping the medium expected to have lower virtuality/jet-mass → will fragment harder wrt pp!

→ Jet Mass measurements at the LHC necessary ... (in progress)

Importance of Virtuality/Jet Mass

Comparing jets in AA with pp with might not be sufficient: not compa

Leading parton after escaping the lower virtuality/jet-mass → will fra

→ Jet Mass measurements at the LHC necessary ... (in progress)

Soft Drop on One Slide

New idea

Soft Drop Condition:

Recursively drop wide-angle soft radiation

Final jet looks like QCD splitting function

Based on declustering an angular-ordered tree

 β parameter gives nice handle

[Larkoski, Marzani, Soyez, JDT, 1402.2657]

[see also Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

New idea: Measuring the QCD Splitting Function (in HI)

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g} = \frac{\overline{P}_i(z_g)}{\int_{z_{\mathrm{cut}}}^{1/2} dz \, \overline{P}_i(z)} + \dots$$

- \sim independent of α_s
- ~ independent of jet p_T (>30 GeV)
- ~ same for quark and gluon

Summary and Path Forward for Run II

Increased jet kinematics in ALICE in Run II and new jet observables → study color coherence; explore transition from weak to strong coupling; explore the microscopic nature of the QGP ...